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The Hamilton - Ostrogradskii principle can be used direct1 to obtain approximate steady 
polyharmonic oscillations in nonlinear systems. Authors of l] have shown its use for appro- t 
ximate frequency determinations in nonlinear conservative systems. The following quanti- 
ties are used in the present paper: mean value of the Lagrangian and the mean value of a 
function W defined in terms of nonconservative forces. These functions are obtained from 
a solution whose form is established with the help of some additional considerations. In the 
end we obtain equations- in terms of mean quantities referred to above, written in a very com- 
pact form and used to determine the unknown parameters of the solution. As an exsmple, we 
consider the interaction of harmonics in a system with dry friction. 

1. Approximate investigation of oscillations in nonlinear systems usually involves a 
requirement that the solution should be of a certain form selected a priori. The choice ma 
be based on experimental or theoretical investigations of other similar systems. Thus in r 2 
to 43 we find that when au external force expressible in terms of a trigonometric series acts 
on a nonlinear dissipative system, then the resulting motion obeys, as a rule, a law in which 
harmonics present in the applied force, clearly predominate. This justifies the approach, in 
which we seek the first approximation to the oscillations of such a system in the form of a 
sum of these harmonics, which are present in the external force. Having chosen the form of 
the required solution, we must now determine the unknown parameters entering this solution 
and this often presents considerable difficulties. Various methods of obtaining the necess- 
ary equations exist. We shall illustrate the use of the Galerkin method and of the harmonic 
balance method in investigating periodic oscillations, together with the methods of lineari- 
sation according to the criteria6 of the minimum mean square deviation and of linearization 

with respect to the distribution function. The last two methods can also be used for aperio- 
dic oscillations [s]. Alternatively, the Hamilton - Ostrogradskii method can be applied di- 
rectly and this approach offers, in some cases substantial advantages. 

Suppose, for example, that we have a system with n degrees of freedom whose motion can 
approximately be represented by 

In addition we shall assume that the Lagraugiau L of this system is known and that the 
elementary work 6% done by the nonconservative generalized forces Qt(qv, qV’, d over the 
possible displacements 8qj has been already computed 

L (Pv, qv’) = T - K 6’W= Q#ql + . . . + Q$qn 

1115 



1116 M. V. Mironov 

For the system under consideration we shall state the Hamilton - Ostrogradskii princi- 

ple in the form which does not impose the usual constraints on the variations of generali- 
zed coordinates at the initial and final moment of time 

+ 

c n aL 

b 

(6L + 6’W) dt = 2 7 6qj It=r 
j=l aqj t=o 

We can always assume that the frequencies in (1.1) are fixed 
oscillations), therefore, varying the amplitudes only, we obtain 

t 

(1.2) 

(this also applies to free 

bj = 2 (S,A,j sin Oit + 6Ati’ COS ait) (1.3) 

i=t 
n + 

6L = 
zz( 

(1.4) 
j=l i=l 

-& 6.4,;’ +.-CC aA,,” 

iI 
aA,j” 

Inserting (1.3) and (1.4) into (1.2) and dividing the resulting expression by 7, we have 

a CL,>, 
--~-;-~Qj~i~~r,,!S.4ii.+(~j+ 

&lij 

+ ‘Qj cos ait>+) fin,,” (1.5) 

I: (2”) dt (1.6) 

Let us now assume that a function W(t) exists, which satisfies the relations 

aW J$’ = - dj (9,. q,‘, 1) (i.= 1, . . ., a) (1.7) 

In this case we can reduce the computation of the mean values of Q.sino) t and Qj cos 
8rt, to the process of obtaining the mean of a single function W(t). Indeed, putting 

qj’ (t) = 2 (Vii’ cos c+t - Y,,” sin a+t) 
(“ij’(Ai~) = OiAi”,.Vij”(Aij”) =OiAij”) 

(1.8) 

i=t 

we find that 

a <w> 
L= 

< 

aw 84.’ 

8Vii’ 
_---.I_ 
aq; avij' > + =--<Q, cosmit): (1.9) 

aw>, 
< 

8W ‘4;’ 

F’ v av,, > + = (Q,sinq>+ <i.iO) 

which make it possible to write (1.5) in the form 

n r 

2 2 
t-1 i=l 

Taking (1.1) and (1.8) into account we can easily show that L(q;, qv) and U’(q, qv’, t) 
can be represented by 

R (x1, . ..( zl) = R (kl, t, . . . . krt) (1.12) 

periodic with the period equal to 2n in the variables zy = k,t (V = I,..., 1) and possessing 
real independent (*) coefficients k 1,..., kl. We shall assume that functions thus obtained 

*) Values kl,..., kl shall be called linearly independent, if the equalities nlkl +...+ nlkl = 
= 0 cannot be fulfilled for any set of integers (n t ,..., nl) f (0 ,..., 0). 
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from L and IV are Riemann integrable functions of xi,..., ~1. Then, from the theory of uni- 
form distribution 161 it follows that the concept of mean value over infinite time is meaning- 

ful for these functions and that it can be computed by means of the following Expression: 

Let us now go to the limit in (1.11) as 7 + 00. By the previous assumptions the left-hand 
side will contain mean values of L and IV, while the right-hand side will become zero since 

the generalized impulses JL/i)qj aud variations 6ql are bounded. Thus we have 

When a periodic solution is required, we find that the most suitable value of 7 is that, 
equal to the corresponding period. 

Then, the right-hand side of (1.11) becomes zero since ~L/~q~* and 8qj are periodic 

end when we retain the notation <R> for the mean value of R(t) over one period, we find 

that we again arrive at (1.14). 

Since the variations 6A,j ‘and ~?A,~“are arbitrary, then (1.14) yields a system of 2nr 

equations necessary for the determination of unknown parameters of (1.1) 

Thus, we have cmstructed the required equations by computing the mean values of only 
two functions, nameIy L and I?‘. The ccmputation was made even easier by the fact that, as 

a rule, these functions are symmetric in ql,.,., q, and (I~‘,..., qn’. This fact becomes of some 
importance when polyharmouic oscillations are studied in systems where restoring or resis- 

ting forces are given in terms of nonanalytic functions such as sgnx, x2sgn x e.a. 

Let us now consider an important case. Let 

Qj = fj (qv’) + Hj (t) (j = 1, . ..) n) 

where the generalized force 
m 

Hi (t) = 2 ( ZZij’ sin Oit + ZZjj” cos G)$) Cm<,0 (1.17) 

corresponds to the driving forces and h (qv’) to resisting forces. Taking into account (1.161, 

let us now put W = @ -N where according to (l.?? 

iv= Hiqi + . . . 4 ZZrr L?,L (1.18) 

and :i, is the dissipation function defined by [7] 

a@ / dqj’= - fj (q,‘) (i = 1, . ..* 4 (1.19) 

Averaging IF’ we find, that <ID = <a> -<N>, where by (1.8) and (1.17) 

(N) = ; i i (ZZii”Vii’ - Hij’Vijfl) (1.20) 

j=l i=-l], 

Inserting <II9 into (1.15) we arrive at the Eqs. (ZZij ‘= Hli”= 0 when i > mf 

a CL) a <w Hii 8(L) a <a>> 

+ W,;” 

ZZijV i=l,...,r 

3Aij’ -=-T’ 
- _ TFj’ ;= ._. 7 
&4,j” L ? .t i j=l,...,n 1 

(1.21) 

In a number of cases the following form of a solutroa is more convenient 

-pj = i ,*li; sin (o,t - (pi]), 

r 

4.;‘ = TJ ‘Vi j COS (Wit - q$$ ( Vij (Afj) = OiAij) (1.22) 
i==1 i-1 
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Converting the driving force (1.17) into an analogous form 

Hj (t) = 5 Hij sin (u+t - I&~) 

i=l 

and using simple operations we obtain, from (1.21), 

- 2 Hij COS (‘?ij - $?Q) 

1 aa> a C(l),> 
(1.23) 

Aija’Pij + avij ~ = i Hij sin (rpij - qij) (i = 1,. . ., r,ij= 1, . ., n) 

2. We shall now consider the oscillations of a linear elastic system with n degrees of 
freedom. Its point C moves along the n-axis and a periodic force is applied to it. Projec 
tion of this force on the x-axis is 

H (t) = 2 Hi sin (ikt - qi), Hi>,0 (2.1) 
i=l 

In order to limit the amplitudes of oscillations we shall apply, at the same point C, a re- 
si stin g force 

f (5’) = - p. sgn 5’ - p1x’ (2.2) 

where q. denotes dry friction while ,6, is the coefficient of viscous friction. We shall as- 
sume that the set of natural frequencies Q,, of the system contains two resonance frequen- 
cies 2, = ntk and?, = nzk where nt and n2 < m are integers, and we shall next discuss 
the character of the interaction of the corresponding resonant oscillations. (The influence 
of high fre 

9 
uency 

studied in -81). 
perturbations on resonant oscillations of a system with dry friction, was 

l,et q1 be the principal coordinates corresponding to the natural frequencies n,. We shall 
seek the solution of our problem in the form 

qj = Aj sin (njkt - (pj) (j = 1, 2), qj = 0 (f = 3, . . ., n) (2.3) 

which corresponds to a translation of the point C according to 

z=i$J aj (CC, qi = i aj sin(njkt - cpj), aj = aj (C) Ai (2.4) 
j=1 j=1 

llere aI (C) denote the value of the coefficients of the form of the natural frequencies of 

the system at C. ‘Moreover we assume, lo - that the amplitudes of the forced oscillations 
whose frequencies differ from n ,k and n,k are vanishingly small, 2’ - that the forms of res- 
onance oscillations sufficiently resemble the forms of natural oscillations of corresponding 
frequencies and, consequently, that the solution (2.3) satisfies free oscillation equations 
(a = const) 

a(L) I aAj = 0, a(L) / @j = 0 (i = W (2.5) 

Calculating the elementary work done by the nonconservative forces over the possible 
displacements, we obtain the following expressions for the generalized forces 

Qj = fj (4”‘) + “i (t) (fj (q,‘) = Qj (C) f (I’), Hj (t) = a,(C) H) (t) 

l‘tilisin;: the results obtained at the end of Section 1 and taking into account (2.5), we 
’ AYt’ 

I ww 
-v--= 

J "pj 

+ Hj cos (cpj - qq, 
a <w 
- L3Vj 

= f Hj sin (cpj - 9,) (i= 1, 2) (2.6) 
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(2.7) V = njkaj, uD> = po (1 CC’ I> + w-h (VP + Vz? 

(H*f = fff7 9nj = 9flr) 

where <a> is the mean value of the dissipation function 

Q, = @s I+’ 1 + ‘/&fa (2’ = V, cos (nlkt - ~1) + V, cos (n&t - qJ) (2.8) 

The magnitude <@,> = :& <]a?] > has no unique analytic expression which would he in- 

dependent of the interrelations between V, and V, aad between at and n2 in (2.8). 

Let us consider the case when VI/V, = y and Vz >O and let 

IYldll n1 < n, (2.9) 

When (2.9) holda, expressions in powers of y can be obtained for <@o> and the fotm of 

these expansions will, in general, depend on the ratios of frequencies and phases in (2.8). 
These series are difficult to derive, and we give now one of the possible methods of deri- 
vation. We write <‘9,> as 

<@,> = fioVo<] y cos (n&f - q1) + cos (n!4kt - aa) I> 

and represent the jodulus in the binomisl form 

]B]=[l-(1 -Br)]‘/‘=l+ 5 (-l)nC,;(l-B”)n 

n-1 

Next we take its mean value term by term and thus obtain the required series which con- 
verge, together with their first derivatives, when 1 yI 4 1. Their first terms are: 1) 

1) VD,> = Za+&Vs 1% + ‘/,y” + r/&a (1 + COS (qa - &I)) + . ..I (2.10) 

when@*= 2nt, 

2) @D,,> = 2n-18oVa 11 + ‘/,y$ - t/,,v9 cos (qr - 3ql) + l/r,& - . ..I (2.11) 

when n2 = 3n t, and 

3) <c&) = 2;a-l&V, [ 1+ r/*ya -1; r/e& + 1.1 I (2.12) 

when n2/n 1 = q/p (here p and q are numbers, simple with respect to each other, and, when 
p = 1, q & 4 while when q > p >, 2, q >, 3). 

In the case (3) do> also depends on the phase shift (coefficients containing the phase 

terms correspond to the powers of y higher than fourth), but the dependence is quite weak 
and can be neglected. 

Let US consider the case (2) in more detail. Inserting (2.11) into (2.6). discarding some 
inessential terms, and taking az - 3qt = 6 we obtain 

PlVl -j- 2&PVtV1t (1 - l/dr co9 6) = HI sin (($I- *) 

I/~~~~~* sin 6 = ET.2 cos (cpz - *,I 

pBV2 + 4bn-l(1 - 74~” + %d co5 6) = H2 sin (cp2 - $2) (2.13) 

Then, combining the first equation of (2.13) with the second and third witb the fourth, we 
obtain 
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Putting the values of the sines as equal to unity, we obtain from the second and fourth 

Eqs. of (2.13) 

(2.14) 
which are convenient for use in the method of successive approximations. Second step of 
this method yields approximate formulas for resonance amplitudes 

Hr (1 - bz) br bzH1 cos 6 -1 
=l= plnlk 1---4H:!(2-bbz) 1 (2.15) 

HP b$H1q 2bzH13 cos 6 
a’ = - - Pmk ’ - bl + H2” (2 - bt)” - 3H23 (2 - b# j (O<bc =g <I) 

from which we see that the resonance amplitudes are strongly influenced by the phase 
shift 6. For example, when b, = 1 and H, = H, + 0.6 .8,, then the value of deviation from 

the mean may reach 25% for al and 30% for oz. 

When the frequencies are less restricted and are simply n1 < n2, we put y& 0.5 and, 

obtain, from (2.10) to (2.12), 

(QJ) = 2n-‘B&J, (1 + ‘/4y-7 

with sufficient accuracy. 
Now, (2.6) yield 

co.3 &j -*j, = 0, or qj - Wj = Vart (i = 192) 

BrVr + 280V1 I nV, = HI, f3lv, -I+ 4/3,n-’ (1 - ‘lrr2) = Ha (2.16) 

which in turn yield approximate formulas for resonance amplitudes 

Hl(i--a) bBH1$ 
al=Bln,k(l -b2/2) ’ “==& 1 - ba + Ha3 (2 _ b# I 

(2.17) 

and a condition in which 1 yI 6 0.5 and 

H2 > 2Hr 9 0.56 &, (2.18) 

To estimate the interaction between the harmonics themselves, we must find the ampli- 
tudes a,,, of the resonant oscillations occurring in the system under consideration when the 

forces H, sin hi kt - q!~, ) act on it separately. 

If the solution is sought in the form 

2;o (t) = Ujo sin (ujkt - cpj) 

then we can easily show that in this case 

Hj (I- bj) b.=% <l. 
'jO= Plnjk ’ I nHj’ ’ 'j0 = 0, b,>l 

Comparing a, with ojo and taking into account the fact that, by (2.18) b, > b,, we find 
that when b, < 1, 

Thus, the interaction of harmonics in the presence of dry friction leads to an increase in 
the values of both resonance amplitudes, and the ‘slower’ harmonic (the harmonic with a 
smaller velocity amplitude) may exhibit larger variation in amplitude. This can easily be 
seen from (2.19). 

We note another fact. From (2.17) we see that the resonance amplitude or is a linear func- 

tion of the amplitude of the force H 1. Since this feature is inherent in the systems with vis- 

cous (linear) friction, a linearization of dry friction is effected by the harmonic of higher 

velocity amplitude and frequency, on the ‘slower’ harmonic. It should be stressed that the 
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expression ‘higher frequency’ does not imply large frequency differences (see [Sll. It will 
be sufficient for the frequency ratio to be 6/S, 3/2, 2, 3, etc. Moreover, it is not at all nec- 
essary for the linearization harmonic to have a higher frequency, it is only necessary that 
its vefocity amplitude is sufficiently large as compared with the velocity amplitude of the 
other harmonic. 
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